f - AD-A127 727  ON COLLOCATION SCHEMES FOR QUASILINEAR SINGULARLY
PERTURBED BOUNDARY VALU.. (U} WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER C RINGHOFER FEB 83
UNCLASSIFIED MRC-TSR-2483 DAAG29-80-C-0041 F/G 12/1




a3 3
S EEE

13
EEF FF FFPTH

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1963-A




MRC Technical Summary Report #2483

ON COLLOCATION SCHEMES FOR
QUASILINEAR SINGULARLY PERTURBED
BOUNDARY VALUE PROBLEMS

Christian Ringhofer

Mathematics Research Center
‘University of Wisconsin—Madison

610 Walinut Street
Madison, Wisconsin 53706

February 1983

(Received November 18, 1982)

Q.
-
g O
E DTIC
w —-—-‘ . J
A (i Approved for public releas ELECTE
g s Distribution walimited MAY 06 1983
k. —
"R
g Sponsored by E
- U. S. Army Research Office and National Science Foundation
K . P. 0. Box 12211 Washington, DC 20550
5 Regsearch Triangle Park
& North Carolina 27709
I
3 83 05 06-120
- ' Ao RS RIP R R RSO E2 e ™ w715« g O g : .. .




R —— e D Aliaennaann e o r

UNIVERSITY OF WISCOMSIN - MADISON
MATHEMATICS RESRARCH CENTER

OM COLLOCATION SCHEMES FOR QUASILINEAR
SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

Christian Ringhofer
Technical Summary Report #2483
Pebruary 1983
ABSTRACT

.A numerical wmethod for boundary value problems for quasilinear systems of
singularly perturbed ordinary differential equations is presented. The method
is based on collocation with polynomial splines. The stability properties of
the associated difference operator are examined and a stepsize algorithm to

achieve a certain over—all accuracy is developed. The number of gridpoints

required by the algoritha is estimated.
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SIGNIFICANCE AND EXPLANATION

Many high-order discretization methods for the solution of two-point
boundary value problems for systems of ordinary differential equations are
already circulated. However, these methods can behave quite poorly in case
the solution has large derivatives, unless severe restrictions on the mesh are
imposed. The reason for these restrictions is mainly a stability problem.

In this paper a strongly A-stable difference method based on polynomial
collocation is developed for a class of quasilinear, singularly perturbed,

two-point boundary value problems. Many problems of practical interest are

included in this class, for inatance the nonlinear deformation of thin beams
or one-dimensional models of carrier transport in semiconductor devices. The

method combines the advantages of having the same stability properties as the

lower order methods which are used already, with the high order of convergence
of collocation methods. It is shown that the number of gridpoints (and
therefore the amount of computing time and required storage) is of the same

order of magnitude as the one required for solving unperturbed problems.
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ON COLLOCATION SCHEMES FOR QUASILINEAR
SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

CHRISTIAN RINGHOFER
1. Introductiom.
Ve consider quasilinear systems of singularly perturbed 0.D.E.’'s on the interval

{0,1] of the form

r‘(y,:) =0 , be(y,:) =0

cy'(v,€) - £(t,y,z,¢€)
(1.1) rc(y,z) 1=

z'(t,e) - glt,y,z,€)
b‘(y,z) = bly(0,€),y(1,¢), =(0,¢), =(1,¢€),¢€)

y and 2z are vectors of dimension n and m. The prime denotes th.'dotivauvc with

respect to t. (1.1) is quasilinear in the following sense:

tl{t,y,z,8) = 21(t.z)y + tz(t.y.z.t)

(1.2) Yo
b(yod,.lo.:,,t) - b1(l°,l1)(y') + bz(yo.y1.zo,z1.t)
3!2
f4y and b, are matrices of appropriate dimensions. We assume that the derivatives '-;;-
abz
W ory are uniformly of order ¢ for YeZe¥qe¥y 2grZg4 in any bounded domain of the
0'%1

appropriate real spaces. Por fz,bz and g there exist asymptotic expansions in powers

of €. The nxn-matrix f 9 1is a block-diagonal-matrix of the form

f'(t,z) 0
(1.3) !,(t.:) - .

o £yt

The square-satrices f, and f: are of dimension n. and n, (vhere n_+n, *n

holds). f; has only strictly stable and f; has only strictly unstable eigenvalues for

8Sponsored by the United States Army under Contract No. DAAG29-80-C~0041. This waterial s
based upon work supported by the National Science Foundation under Grant No. MC§=7927062,
nod. 2.
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te (0,1] and z in a certain domain D of ®®  (defined more precisely in chapter 3).

From the analysis of singular perturbations (see c.f. Hoppenstaedt (1971), O'Malley (1975),
Eckhaus (1979), Flaherty and O'Malley (1980) and Ringhofer (1981) we know that under these
assumptions we can expect a smooth solution in the interior of [(0,1) while at the
endpoints boundary layers will occur. Therefore the usual discretization methods are not
applicable unless we impose conditions on the mesh. (See c.f. Ascher and Weiss (1980) for
the behaviour of collocation methods of Gauss, Radau and lobatto-type.) The standard
thoo.ry for discretization methods for general grids is not applicable unless the maximal
stepsize is smaller than €. Flaherty and O'Malley (1980) avoid this difficulty by solving
only the reduced problem (which is independent of €) instead of solving the full problem
(t.1): As € tends to zero the solution (y,z) of (1.1) will converge to a function |
(;(t).;(t)) uniformly in compact subsets of (0,1) with a convergence rate

0{€). Obviously (;,;) satisfies

~

(1.4) 0 = £(t,y,2,0) , z' = glt,y,z,0) .

To represent (;,;) as the solution of a boundary-value problem (the reduced problem) we
need m boundary conditions for the equation {1.4). In the quasilinear case this can be
done by a "cancellation law” (see Flaherty and O'Malley (1980)). In compact subgets of
(0,1) this gives the solution (y,z) up to the global discretization error we make by
approximating the reduced solution and a term of order O(€). Inside the layer this gives
us no approximation. Using some information about the analytical structure of the solution
we construct a method which is designed especially for problems of the type (1.1): It
shall solve (1.1) directly. So we need not compute the boundary conditions for the reduced
problem numerically. The amount of labour (i.e. of gridpoints) which is required to ‘obtun
a uniform approximation of the solution on (0,1] shall be "reasonable” (that means not
proportional to e-i). If we use a general (so for instance a uniform) mesh with maximal
stepsize ll. > > € the approximation shall be as good as the one obtained by solving the

reduced problem only. The solution will consist of a smooth part and two "layer-parts®

exponentially decaying from the endpoints. More precisely we have




y (e, = y(e) ¢ ud +oce
Yt =y'e + wld +oto

z{t,t) = g(t) + Oo(e) 1

(" and y* are the first n_ and last n, components of y.) u and v decay

exponentially as their argquments tend to infinity. u(f) behaves roughly like the solution

g of
(1.8) e g'(t,e) = ) g(t,e), C(O0,e) =1, Rg A <O .

A digcretization-method which gives us a good approximation of y  for an arbitrary mesh

should also ba able to deal with (1.6) on a uniform gria. We now compare the behaviour of

the Box—scheme and the implicit Euler scheme at the problem (1.6). We have

(Mo (2 2)
¢ a1y '%“i""(”)' e 0L, (2)

) 141 ) 141
(,07) .
il
m Mi o M-t o4 (2) M- _¢€
g o= (1T - (AP NC RIS R

(1.7) shows that only the implicit Euler scheme gives us a good approximation of the

solution. The reason for that is, that the growth function of the Box—-scheme

(1*:)(%:)-1 tends to -1 as 2 tends to infinity whereas the growth function of the

implicit Euler scheme (1-z)"' tends to zero. This is the basic 1dea of a method
developed by Kreiss and Wichols (1975): They use the implicit Euler schems for y . Since
the eigenvalues of f: are strictly unstable, they use the explicit Buler-scheme for

y’. For = they use the Box-scheme. We extend this idea to higher order methods and our
approach for this extension is polynomial collocation. Por a positive integer q we

choose qt+1 reference points 0 = u, <..< u - 1 on the interval {0,1) according to

(1.8) v, -;}, §=0(1)q .

CoC b = 1, A= nx(tu'-t‘)} we choose the collocation

' .
. . ' Por a given mesh T_:= {0 = ¢
- .} 0

points t“ according to
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' (1.9) ‘13 =t + hiuj ht ILIVORL A A j=0(1)q, £ = 0(1)N=1 .

' Note that tiq - tiﬂ,o holds. On the subinterval (ti,t“,) we now use for y  the

collocation points "11"""1:1' For y* we use ‘10""‘1,q-1' For z we use

tiorecrtige For g = 1 this gives the method of Kreiss and Nichols except that we use the

trapezoidal rule for =z.

We show that if the reduced problem has an isolated solution, the operator built by

. 'ch and the boundary conditions is stable in the sense of Keller (1975) and that the

stability constant is independent of ¢ and the griad '1'". So if we use a mesh selecting

strategy to achieve an over all accuracy § we only have to control the local discretiza-

tion error. We develop such a stepsize algorithm and show that the amount of gridpoints

required to achieve an over-all-accuracy § is essentially independent of € and
1

proportional to § 9, rhis is comparable with the amount of gridpoints our method would

If we do not use a stepsize algorithm we can show the

need for an unperturbed problem.

é following result: For an arbitrary mesh we define the global error e by

L (yh - y(th,e), £, - z(th.c)) where (y(th,e), z(th,c)) is the solution of the

continuous problem restricted to the grid '1‘“. Then we have

t t,, -1
lo 0 < cten®uT Mreraxp(- %Hexp(l i:'

)

(1.10)

A

-1 thr -1 N-1 x‘ht -1
s 0 0e=E o e=5 1, 3=101q 1= 001N
=0 r=i+1

(here H denotes the maximal stepsize). So away from

for some positive constants c,x,A

the boundary we have the normal order of convergence O(Hqﬂ) of our method plus a term of

order O{(€). Thus the approximation is as good as if we had solved the reduced problem

only.

In chapter 2 we define the collocation scheme

This paper is organized as it follows.

and introduce some basic notations. In chapter 3 we present some analytical results of

singular perturbation theory. For the proofs we only refer to the literature. Furthermore

S S O U
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we impose the main assumptions to be satisfied by the continuous problem. In chapter 4 we
state our main results and explain them in a more datailed manner. 1In chapter € we prove

thea. In chapter 5 we demonstrate our method on a model problem where the continuous

solution is known.

2. _The method.

In thie chapter we define the collocation method and introduce some basic notations
which we will use throughout the rest of the paper.
(2.1) Definition: We call a set of g+1 points 0 < v, < u, ool uq_‘ < uq“ a set of
reference points in the unit interval,
(2.2) Definition: Given N+1 gridpoints 0 = ty <eo< = 1 and a set of q+1 reference
points we define for each subinterval [ti.tiﬂl q+1 collocation points by
(2,3) tgy 3™ %y + hjuy  hy e by, - by, § = 0{1)q, 1 = O(V)N-1 .
(Note that t;, = "1—1,:; =~ t; holds.)
{2.4) Notation: We denote the mesh consisting of the gridpoints and the collocation points
and its maximal stepsize by

TH 1= (tlj'j = 0(1)q, 1 = O(1)N=-1}, H = l:x hi .

(2.,5) Definition: PFor a given mesh Ty we define the scalar (vector-, matrix-) grid
function x, as a sequence of numbers (vectors, matricss) by

x, = (xu. 3 =0{1)q, 1 = 0(1)N-1, Xiq " "14!,0} .
(2.6) Definition: In the space of grid functions we introduce a norm by

xy - -x(|xij|' j = 0(1)q, i = 0(1)N=1}

where -} denotes the modulus or the max~norm in RB' or the matrixnorm introduced by
the max norm.
(2,7) Notation: We denote the first n_ components (rows) and the last n, components
{rows) of the vector (matrix) x with x  and x' where n_ and n, are the dimensions

of £, and t: in (1.3).




(2.8) Definition: To apply a (polynomial) collocation method one gensrally seeks a
polynomial spline function, which satisfies the given differential equation at certain
points (the collocation points) as well as the boundary conditions. In order to
approximate the solution (y(= (y~,y*")T),2) of (1.1) we construct a vector-spline function

- + T
(py.p,). Py = (py,py) which satisfies:

a) py'Pz e Cm'”

8) p- and p* are polynomials of degree qi Py is a polynomial of degree q+1 in each

Y y
subinterval [t ,t 44}

Y) To generalize the implicit and explicit Buler method we request that p; satisfies the
differential equation at all collocation points tij except the first one in each
subinterval and p; satisfies the differential equations at all collocation points except
the last one in each subinterval.

. -
c(py) -t (t,py,pz,e) for t = tij' = 1()gq, 1 = 0(1)N=1

(2.9 s(p;)' = f+(t,py,p:,c) for €=t 3= 0({1)g=1, 1 = O(1IN-1 .

For z we take all q+!1 collocation points except for 2 subintervals . For reasons which
will be explained in chapter 6 it is necessary to modify the method used for z in order

to obtain a higher order method. Given a mesh Ty Wwe assune, that I, steps h1 on the

left hand side and I, steps on the right hand side are of order O(e&) (where we also ‘

allow I, and I, to be zero):

h, = 0(e) 4 =0(NI, =1, L= I(1)N=1

hI' > € N-I,-‘ > € .

For the subinterval [t11,e11”] we take the collocation points tI1,1""tI‘,q (as for

py). For “8-12-1"}1-121 we take "'N-Iz-i,O""tl!-Iz-V q =1 80 we have:

-6~
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1 =g it i=1,
; 1
1 P, " g(t.p,.p'.c) for t = t“. §=0(1)q-1 42 i = !-Iz-‘l

* § = 0(1)q else .

For our analysis it will be convenient to rewrite (2.4) into a difference scheme.

(see Weiss (1974)) as

- -,
’13 10 -
: (2.%) kz‘ wo £ e Y 0B 6

| y-y

{, 111 {

| € t(t,y,s,c)
| h, lojk FUSEST S § 3

Yk Il qpeY iy oBeye ©

{ . B0, § 0
h
i k=0

3= t{t)g, L = 101)N=1

w(s) (uk—ul)

u wis) (“k‘“ )
ik I»j ) 'T")(o X !o (s=a_)w" (u ) (s~u_)
3 (a-ak w' (0, l‘\lo j s, v’ (u -n,

a
Yix * Iy o (\l:)(o-uk) s

wis) = (l-uo) eoe (l'\lq) .

- ot 0
{2,6) wotation: We define the discrete opsrators Dy, 8,, S,, 8, by

s

-7

e

.
;{u‘
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1f we

denote the values of py an'd Py at ""‘1) by y“ and 244 (2.4) can be written




[ ppeodon:
¢

C X470
! (thh)!.j n,
8x ) = § W (s;x ) -q-)j1 :
W'y T L ek T By T L ik Mk
‘ o (thh)“‘j if 4 =1,
7% ), . =
. n*n’13

+
(shnch)1j if 4 = NI,

0
% W, X otherwise .
k~0 ix ik

Wwith this notation the discrete problem can be written as

t (2.7) Feh(yh"h) =0
e €0y, - Sy 4 (th,yh,zh, €)

+ + _+
Feh(yh"h) € Dh Yy = sh £ (th.yh,zh,e)

]

0
thh - sh q(th.yh,zh,c) .

{2.8) Remark: To this point we did not restrict ourselves to a certain set of reference

points. A natural choice would be Lobato~points in order to achieve the highest possible

order of accuracy for z. However, for the rest of this paper we restrict ourselves to

T e R 2 A A

squidistant reference points.
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3. Analytical results and main assumptions
Quasilinear singularly perturbed b.v.p.'s of the form (1.1) have been studied by

several authors (see c.f. O'Malley (1974), Flaherty and O'Malley (1980), Howes (1980),
Ringhofer (1981) ). 1In this section we pregsent their results in a manner which is
appropriate for our purposes. One can find the proofs either directly in the above
mentioned papers or can prove the results of this section analogously using the special
structure of problem (1.1).

The solution (y,z) of (1.1) has a uniformly valid asymptotic expansion of the form

~ t 1-t
(3.1 t,e) ~ Ae) + p () + Iy
) y(t, jgo (7,8 + ui(Q) + v (=25)
o -~ L 1
(3.2 w0 ~ § el s § (a5 + g (1)
5m0 3 g o 3E e
where “3'“3'“3'33 are exponentially decaying as their arguments tend to infinity. (We

call a function V(T) exponentially decaying if it satisfies HIY(1T)1 ge exp(-czt) for

1
positive constants ¢y and c,.) To derive this expansion it is necessary to define the
reduced problem. This is done in Flaherty and O'Malley (1980) for the case of separated

boundary conditions. 1In our case we proceed analogously.

(;0:;0),H0 and v, satisfy
(3.3) 0= t(t,;b,;b,O), zy = g(t,;b,;b,O)
(3.4) Sy (1) = £,00,Z,(0))ep (1), = v (1) = =£,(1,2(1))
. ar uo 4(0.2, BolT), 7 vl 4 vz(1) vo(t)
- . ¥g(0) + ug(0) - .
(3.5) b (24(0),2 (1)) + b,(0,0,2,(0),2,(1),0) = 0 .

yo(I) + vo(O)

Since Yo and U, wWast decay exponentially u;(O) =0, v;(O) = 0 must hold. Wwe split

up b1, into

Yo Yo Yo
(3.6) b1(z°.z‘) - b11(z°.:1) y+ + biz"o"1) y_ .
1

¥y
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(Here y and y+ are defined as in (1.5).) 8o, by, and by, are (ntm) xn

matrices. We assume that b,, has maximal rank in a domain of nz‘ containing

(:o(O),;°(1)) and that there exists a regular (n+m)x(n+m) matrix W(zy,zq) such that

V(!o,l1)
(3.7) H(zo,z1)b11(z°,z1) = .

holds where V is a regular nxn matrix. In that case (3.5) is equivalent to

e— - - ¥(0) . .
(3.8) W (2, (01,2, (1)) (b, (01,2, (1) o + b,(0,0,2,(0),2,(1),0)) = 0
uow)

(3.9) = v (2101, (1) WT(2(0),2(1))b(F(0),¥(1),£(0),£(12,0) .

+
vo(O)

(Here W~ and W' denote the first n_ and the last n, rows of W.) (3.8) together
with (3.3) gives the reduced problem. If the reduced problem has an isolated solution we
can show the uniform validity of the asymptotic expansion (3.1), (3.2). This leads to the
following assumptions: There exists a domain D of R® so that

(3.10) Hi: f'(t,z) is a block diagonal matrix. So

f,(t,:) 0
t1(e,z) =

0 ft(t,z)

holds. There exist positive constants A_ and :+ s0 that all eigenvalues ) of the n_
dimensional block f:(t.z) satisfy Re A < -1 and all eigenvalues of the n, dimensional
block fj(t,z) satisfy Re A > X for all te [0,1) and ze&D.

{3.11) H2: There exist matrices W(z;,z;) and V(zg,z¢) as defined in (3.7) for all
zge2q © D.

(3.12) H3: The reduced problem (3.3), (3.8) has an isolated solution (Yo (t) 2y ().
;o(t) lies within a compact subset of D for all t e [0,1].

(3,13) H4: f,9, and b are as often differentiable as necessary with respect to all of

their arguments.

-0~
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Under these assumptions the asymptotic expansion (3.1), (3.2) is uniformly valid.

{3.14) Notation: For the further we denote with (Wb)(y,z) = 0 the boundary conditionm.

| > W(z(0,€), £(1,€))bly(0, e),y(1,€),2(0,€),2(1,€)) =0 .

. 4. Main results

wWe first show, that under the assumptions {3.10)~(3.13) there sxists also a solution

of the discrete problem
(4.1) reh(yh"h) =0, be(’h'zh’ =0

and thia solution is stable in the sense of Keller (1975). We start with constructing a

uniform O{€+H) approximation of (yh, z, ): We define the discrete reduced problem by
R R
(4.2) 'h(yhllh) =0, b (yh.zh) =0

{ o f(tij'yij"ij'O)
(F),, = j o= 1(tlq, 1 = O(1)N-1

0
LIPLSOR CIUW LN

7

R
by, .2 ) = Wy (2g0,500)b0Y oYy 200 20 ?) -

ERN .

i Because of hypothesis (3.12), (4.2) has an isolated solution (;h':h) (see Keller

- [ ]
[{1975)). We now define Yn'Ynth by

bl - ~ + + + ~
Dy, = By (L (.2 0y, ), Dy, = 5, (£, (.2 )y

y ~ ~ -1 ~ ~ ~ ~ ~ ~
(4.3) y | " V(Zggemyg) Wy (BgqeEegDYggeYygr2ggr Teg )

0 ~.* 0 _~
b N T T

(y:.z:) is a uniform O(€) approximation of the solution (y,.%,) of (1.18). To show
& the existence and the stability of (yh,zh) we need that the linearization of the operator

s ) built by Ten together with the boundary conditions (3.14) at (y:.z:) has an inverse
' ‘ bounded uniformly in € and H. This gives a linear difference operator (L °l.l) of the

-1t~
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|
+
f

' La ERGRRtt 2 = - ;"‘"‘:"W""""m fad

- -1 12,
€ Dhyh - sh[(hh ) Yh + (A ) zh]
11+ 12+
(4.3) Lth(yh.zh) =l € Dhyh - sh[(nh ) ¥, * (Ah ) :h)
s"m;1 nt A z ]
T, 12 ¢ - T
Tey” 000’ * B WoorYuo' 200’ %xo’
(4.4) ’(yh'lh) - 2 - - .
B {¥50+Yn0 %00 %w0’

8ince y: will exhibit a rapid tranaition at the endpoints the matrices A:j will consist

of a smooth part and a part exponentially decaying away from the boundary i.e. they will

satisfy
K1 _ ~k1 ‘Kt o
Ah Ah + Ah ’ Il)hAh h s g c1,k 1=1,2, A h =0
. 1-1 oh N-1 &
u:' e, 1 0e=5""4 1 (1 + =57, 11,2
3 =0 r=i+1
(4.5)
1-1 Yh_ _ N-1 ™
tal j) tse, 1 (1+—57, |(Al§)’l s 1 oa+=5"
r=( r=i+1

j=0(1)g, 1 = O(1)N=-1

Because B is the linearization of the boundary conditions (3.14) B will satisfy
aer(s') ¢ 0.

For the problem
(4.6) Lch(yh,zh) - %, B(yh.zh) =f

ntm

(vhere ¢ is a vector grid function of appropriate dimension and B E€ R ) we define
h . -

the reduced problem by

R R
(4.7) Lh(yh,zh) .h' B (yh.:h) Bz

e




. (n;z)'zhl

- 11 ==
-sh[(hh ) 1

(4.8) L:(yh,:h) - -s;[(hi' vy

12+
h)yh+(nh)zl

h

0, 21 22
Opzy = 8N Y, ~ AR

R 2, + -
(4.9) B (Yh'lh) B (Yoo'yso"oo"\io) .
(Bz denotes the last m components of B). For the so defined linear operator we have
the following stability result
(4.10) Theorem: let L, ,B,Li,B° be defined as in (4.3), (4.4), (4.8), (4.9). 1If there
exists a constant c¢,, so that l.: satisfies

R R

(4.11) l(yh,zh)lh < ci(mh(yh'zh)'h + IB (yh,:h)l)
then the problem
(4.12) Leh(yh,zh) - .h' B(yh,zh) =8
has a solution (yh,zh) for all vector—-grid functions ‘h and all vectors 8. There
exists a constant c, independent of € 3o that ( Yh"h’ satisfies:
(4.13) l(yh,zh)lh < c.‘,(l%lh + 18Y) .
Since the continuous reduced problem has an isolated solution the linearization of
(4.14) rch(yh"h)' (Wb)(yh,zh)
satisfies the hypotheses of theorem (4.10). (Here (Wb) (yh,zh) is defined analogously to

]
‘3. 14).) Using theorem {(4.10) we can show the existence of a solution of (4.1). Moreover

S
y the operator defined by P ¢h and the boundary conditions Wb is stable in the sense of
¢
? Keller (1975) in a neighbourhood of (yh.zh) of (4.1). The neighbourhood and the
| i‘ stability constant are independent of €. So we have
i
: ‘i (4.15) Theorem: If the continuous problem (1.1) satisfies the hypotheses in chapter 2 then
[
A
"'} ! there exist some positive constants co,no so that (4.,1) is solvable for all € < %
Ch
_'_o' ? and H < Hy. The solution (y,,z,) of (4.1) satisfies
el
ol 0 0
g . (4.16) l(yh,zh) (yh.zh)lh 3 c, ¢
-': :
| for some positive constant ¢, independent of €. Here (y:,z:) are defined as in
I
ETY
!
{ -13-
!
1
i
!
}-
N— [




(4.3). The stability-inequality

1 .1 2 2 T .1 2 2

I(yh,lh)-(yhmh)lh S c‘l,ﬂl(yh"h)-rﬁl(yh"h,lh +
(4.17)
1 1 2 2
+ I(Wb)(yh.lh) - (llb)(yh,sh)l

is satistied for all (yl,sl), 1 = 1,2 satistying Myl,zd) - (v0,2)1 ¢p andaanl

Ine*n' ' Yn'*n i Y X
H<H, € <€y
8ince (y:,::) in (4.3) is an O(e) approximation of (y,.s,) the global error

((yh.th)-(y(th,t), :(th,t))) is up to terms of order O(¢) given by the difference

between (y:.z:) and the O(1) terms in the asymptotic expansion (2.1), (2.2) of

(y(e,c),z(t,¢€)):
(4.18) Theorem: Let (yo,:o) denote the O(1) term in the asymptotic expansion of

{y(t,€),z(t,€)). Then there exist positive constants c¢ and « s0 that

_ 00 q*1
l(yo(t“.c).so(cu.t)) (’13"13” § cly +
i-1 *h N-1 G Yt
n (1+—t§)'+ n (1*-;5)’+0xp(-—%1)+
=0 rei+t

t, -~
exply, 1))
holds for all H CH, and ¢ < ¢, where Y and vy,  are the (in modulus) smallest real
parts of £;(0,5(0)) and f£5(1,3(1).
From Theorem (4.18) follows immediately:
§4.20) Theorem: Llet (y(t,e),s(t,t)) and (y,.s,) be the solutions of (1.1) and (3.1},

Then there exist positive constants es,v and x so that

- a1
""‘u"""u” (y“,:u)l < °6m + e+

i-1 “h_ _ N-1 o -1 -yt
n (1~i'—;£)‘+ ] (1+-‘5) OQRp(-;u)’
=0 =i+l

t, =
exp(a, -d—))

holds for all ¢ <« co and all grids ) with H < Hy.

-14-
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Away from the boundary we will have an approximation of order om""n) for an

arbitrary (so for instance also uniform) mesh. 8o in this case we have the order of
convergence which we would obtain by solving the reduced problem plus a term of order

o{c). In that sense our method is equivalent to solving only the reduced problem except
that we need not compute the boundary conditions of the reduced problem. We now consider
the case where we want a better approximation than the one we obtain by using an arbitrary
mash. This is of some interest if either ¢ is rather big (let's say ¢ = 10’3) or if ve

are interested in the solution inside the layers.

¥ 1f we can show now that (y(t,,c),z(t,,€)) (the restriction of the exact solution
i . (y(t,c),z(t,c)) on the mesh Tgy) lies within the ball !p(y:,::), theorem (4.15) tells

us that we only have to control the local discretization error to obtain a uniform approxi-

i _ mation of the solution. In other words if we choose the mesh T, so that
l P, (y(t, €, 2(t 000 <&
' { ' holds we have I(y .z ) - (y(t ,€),x(t, €)1 = O(8).

(4.22) lemma: Let the local discretization error (l:,t:) be defined by

L
‘ : (4.22) ul.g - P plvit, O,ut )
é where (y(th,c).:(th,t)) denotes the restriction of the solution of (1.1) to the grid
i : 'r". Then there exists a positive constant ¢, such that
h At
i Yy L% q qtt _i.q - —t
"‘u"u" < c.,(chi + hi + ‘c )? exp( q€ )
§ - -
L h At h, q t, -1 h, g
L . ‘ 4yq+t -—t (L S - }
. (4.23) + (g exp( hﬂn*(‘) exp( q‘)* (‘)
b : 4& €1-1
3 ! expi}, -_(qﬂ)tn
"' ; ] holds for 3j = 0(1)q, 1 = 0(1)N-1 and some ti. tlti.e“‘l.
[ hf’ 80 if we want to guarantee that l(l{,l;)lh = 0(§) holds for a certain desired
i ::" 4 accuracy & we have to choose the mesh T, according to

-18-




1.1 re L
h < min{6% ¢ 9, Gq*‘, 83 ¢ expl - i), 6q‘1 €
(4.24)
1 - 1 -
At = -2 (e, -1) —_— -A (€ -1)
- +° 3 1 4+ i
exp (@ie * 8" € expl Yo 6q+ € exp( (@ i)e 1} .

I1f we choose Ty according to (3.24) we can show that I(yh,zh)-(y(th,e),z(th,e)! -
[}
O({e+8) holds. Therefore (y,z) lies within the ball with radius p and center (yh,zh)

where Fch is stable (see Theorem (4.15)) if only € and § are sufficiently small.

Applying Theorem (4.15) gives

(4.25) Theorem: If Ty is chosen according to (4.24) then there exist positive constants

cgr €, and 60 so that

(4.26) I(yh,zhh(y(th,e),z(th,e))lh < c86
holds for any 6 < 60 and € < €o°

To construct the mesh T, we proceed as it follows:

1 At

Step 1: Starting with hgy we choose h; according to h1 & min {edq expl qci) .

1 1
— At —
+9 - +
8 exp ————i—} as long as h_ < &7 ! holds. (For a reasonable &> éq’1
(q+ile i
1 1 1

§7" ¢ 6% ¢ holds.)

Step 2: Starting with h,_ , we choose h, according

] 1
= A e, 1) — LIRS
q i+t q+] + i+

h, & min{ed” exp " , €85 exp — oy}

2
qtt

as long as h,; < § holds.

1
+
Step 3: Por the rest of the interval choose h1 < & 1.

Therefore it is necessary to know the constant ) and X+ which are the smallest

- ~ + ~
moduli of the real parts of 11(0,3(0)) and f1(1,z(1)). These can either be computed by




t

JEn e DRt

|
|
|

solving the problem on a uniform mesh first or estiamtes for them can be obtained, if one

uses a continuation method.

An immediately arising question is: How big is the additional amount of labour
inside the layers? That means: How many grid-points do we need in steps ! and 27 what
one would like to have is an estimate for the number of grid-points, which is independent
of €. Unfortunately the number of grid-points required to achieve a certain accuracy 8
tends to infinity as € goes to zero, but the growth is so slow that for reasonable ranges
of € and & it appears to be independent of €. MNore precisely we have
{4.27) Lesma: Let N(§,),y,c) denote the number of grid-points produced by step 1 (or 2)

(so A either equals )_ or X*). Then we have

(4.28) IN(8,A,q,8) ~ N(§,)0,q,6,)] <3
for §,\,q and <, and € satisfying
ki
q - - -
M, 102, 10Pce <1072, 1=1,2 .
q i
Purtherwore
(4.29) w8, A,q,6) < const 36 T tacen (1)
hold'c

4.30) Remark: The estimate (4.29) is not sharp, but together with (4.28) it shows, that
for reasonable choices of ¢ and ¢ the amount of additionally needed grid-points is of
the same order or magnitude as a g-th order collocation method would need for on

unperturbed problem.

5. Numerical RExample

We now illustrate our results with a third order quasilinear model problem where we
know the exact solution. PFor the computations a modified version of the packages LOBATO

and SOLVEBLOCK (see de Boor-Weiss) (1976)) has been used. We consider the system

-17-
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cy; - -(:-q,*czyfut-s:zo') (y,-qz-o‘05u°(yz-5¢t+1 »
(5.1) ev) = (s=ey ve’y, veat-5%et) (y,-5a" )45 0"

g' =g~ (CMt)(y’-tyz-o'WSut)

¥y (o,c)wz(o,c)n(o,c)-a-c =0

(5.2) y1(1,c)ﬁyz(1,c)+:(1,c)-'lc-‘l-c -0
y1(1.c)*l(1,c)-2o -¢c=0 .

Here the matrix f,(t,z) is of the form

(8.3) gt = (5 2)

and we have the reduced problem

(5.4; 0 =2y, + 2% 0 = 3y, - 525,20 ~ £-et(7,~e")

(5.5) 21 ¢y (1) = 20

which has the solution ¥y = et.yz = Set, z = ot

(5.1), (5.2) has the solution

€t 1= * t-c
yy=e ¢ oxp(—:—) + ¢ pr(’-‘—-)

t
(5.6) Y, * se* + axp(2Y)
t

z-oti-c.xp(‘:) .

We solved (5.1), (5.2) using the mesh selecting strategy (4.8). We varied the desired
L 1
accuracy & by halving Gqﬂ starting with &1 = %. Thus the maximal error should

dacrease like (';')q. We varied ¢ from 10'3 to 10'10 in steps of 10-2. By varying

€ for fixed § and g the norm of the errors differed by less than 1\




v
.

L v by TN NHTSS;

TR
Maximal errors of:
1
&1 1 2 3 4
.25 «11 +«81E-2 +64R~-3 +I2R=4
.13 +63B~1 2122 01E=~4 «29%-8
+638~1 «358-1 +«548-3 « 1 B=d « 128-6
« 188~1 «14R2-3 «138-8 + 1383 «73R~8

Note that the error-constants are decreasing for increasing q. (8o for instance for
q = 4 the error oconstant is 0(10'2)). To achieve the accuracy the following amounts of

meshpoints have been required:

Required meshpoints:

1\¢
& 1 2 3 4
.25 7 2s 1] “
.13 26 'Y se 7
.63E-1 <« 7”7 109 140
«31m=-1 7 144 200 272

1
8o for a fixed q the number of required meshpoints grows like &, Varying ¢ from

10°2 to 107 the amount of grid-points for fixed q and § varyied only by % 1.
Now we solve (4.1), (4.2) using a uniform mesh (hy =N, 4 = 0(1W=1). Because of the
theory in the preceding chapter we expect an error of order (lq"n) away from the

boundary layers. In the next table the norm of the error at t = 0.5 is listed for

q.jo




e - -

e
L

s

-}
] o1 .SE-1 «25B-1
« 1B=2 -588-3 .558-3 +S1E=3
. 18=4 -538-5 « 6E-5 . 62-5
«18-6 . 5B-6 . 48~7 5787

80 we see that the error is of order ¢ independent of H except for €= ,.1E-6 and

H = ,1 where cllq” > € holds. (c is the error constant of our method for q = 3,)

6. _Proofs:

To prove Theorem (4.10) we first need some auxiliary results. We start with scalar
constant coefficient problems and estimate the growth function of the method we use for the
component y in (1.18):

6.1 Lesma: Given the complex numbers x, and z and the vector e = (c,,..,oq) the

solution x = (s,,...,xq) of the system

x, = +z§w- +e, , 3=1Nq
3" % e
(6.2)

satisfies

xy = Yy (m)x, + B:(z)o .

[ j are vectors of dimension q. Y 3 and the components of Bj are rational functions
x

of z. Por q = 1(1)10 there exist angles eq satisfying 0 < eq < 3 and positive

constants c:q such that

(6.3) ”j(’”' 18,(z)0, |le(l)|o 128, ()10 < ¢:q

b 3
holds for sz in sq = {(z]Rez < 0, {Im 2(Re :)'1| < tan Oq) and j = 1(‘)q.vq satisfies

qul <1 in 8

Proof: (5.2) can be written in the form

d 0) = 1,
an Yq()

x--?’xo'tzn.x*c

where 1 denotes the vector (1,..,1) and 0 the q xq matrix (v:j.i,j-hq). 1t




we solve this system by Cramex's rule and look at the involved determinants as functions

of z we can write the solution (x,,...:q)’ in the form (6.2). The Yy and .j turn

out to be rational functions where the degree of the denumerator-polynomial is q - 1 and

‘lt

the degree of the dencminator polynomial is q. Therefore they behave like =~
2 = e,

The growth functions 1q have been analyzed numerically by Usberhuber (1979} and are

less then 1 in modulus within the sector sq.

(6.15) Lemma: Let all eigenvalues A of the nm matrices A, lie within a compact

subset of the interior of sq and satisfy Re A < ~31¢0 fora positive constant 1. Let

.Dh“h'h < Sy hold for a positive constant ¢y4. Then the solution 7y, of

mhyh-sh (Ahyh )-!h B satisfies

(6.16)
'yh'h < ctz(lnl + lfhlh)

for some positive constant c¢,, indspendent of €. (Here b (Y and f, are vector grid
functions of dimension n.)
Proof:s We rewrite (6.16) in

(D 8 ’h)ij + hi(sh“bhlh)yh))ij + !“ j= 1(1)q, L = 0(I)N-1 ,

wh'iy = Pio!Sy
Since DyA, 1is bounded we get, by using Lemma (6.1)

h n h
Yiar,0 " Y% P00 * 2’ (BT Agg) ¢ fux) ORI 0)

h
Hiere the rational functions Yq and Bq are applied to the nonsingular matrix % Am in

the usual manner i.e.

h h
-t -4 - -1
LA Ag) " I, (TR YOS I

where I is a closed curve in the complex domain and all eigenvalues of A;, lie within

. (See c.f. Dunford Schwartz (1957).)




NN xy . h_ =1h
byt € lal +conse(] I (1-~EE L.
3=0 r=}
(6.17) =1 §=1 r .
+ ) n (v- ) )(l! b, ¢+ OtHly, 3 ))
I+ reyel
€Y _h_ -1 -xth v
by estimating (1 - —i—x) < exp( ) with some suitable constant w we get
M M XY h -1 h M -uml .t -g)
(6.18) I : ;1 < ] expt v(t”-tj))-‘i <l ]tuoxp(- e y( : )ds .
=0 r=J I=0

8ince the integral is bounded and the other sum in (6.17) is geometric we get the desired

estimate
(6.19) Lemma: Let Ay, be a n*n matrix and '{h and fh be n-dimensional vector grid
functions. Let A, satisfy the conditions for the matrices A, in Lemma (6. 15). We

assume that

'DhAhlh < S437 .Dhth'h < Sy

(6.20) - 1 -:hr -1
"13' < 4 n (1 + T) j=1(1)q, 1 =0,1,2,...
r=0

holds for some positive constants Cqy3¢ c“ and «. Then the solution ¥n of

(6.21) hyh h“hyh*fhﬂ) =0, Yoo " @ satisfies
1 R i oh -1
v, = - +y +o0(e), Iy P T (1 +—5)
(6.22) h h7h 13 15 reo €

3= 1(1)q, i = 0(1)N~1
for some positive conatants €5 and o where o< -.ln(:,c ) holds. (Here cyp 1is

defined as in Lemma (6.15).

Proof: We define 28 and uw, by

(6.23) DYy = S Ayt 3= 1UNg, 4 = 00,000 ygy =0t "oo‘oo .
{6.24) w =y, * (A"'i’)h - ;h, then u ~satisfies

-1
(6.25) o, =8 Au) + o ') .

-22=
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b . Because of Lemma (6.15) we obtain thet Iu b = 0(e) holds. We define v, by

- i oh -
5
{6.26) v!.j - yu n (1 + “< )s 3= t(1)q, 4 = 0,',....v°° " Y50 *

for some positive ¢ less than un(:,cs‘). vy, satisfies

- i oh
- r -
‘ (6.27) ¢D, v = “10 + sij(%'h"’hth)' plj - z:o (1 + € ) 3= 1(1)q, L = 0,1,.. .

i3'n
h'h 14
(6.28) Lemma: Let the operator associated with the problems

(6.29) D%, = s:‘cn‘h*‘n" Hixgg5g) = M

I

|

i

I Because of {6.20) Ip £} < c,  holds. So v, 1is bounded and therefors (6.22) holds.
!

4

!

)

! have a uniformly bounded inverse i.e. let Iz 1 <c  (Ind + iy 1) hold for some

constant C,c. (Here 2 and Yh denote vector grid functions of dimension m. H,n

i and C), are of appropriate dimensions.) Let the m~dimensional vectors ‘h satisty

- +
{ ) 1,1 < cpp(lal 1 + tal 1), 3 = 0C1)q, 4 = 0C1IN

-1

3 ’ i N=1
. ) v

C.oh_ =1
(6.30) oy = 10 +—'—E—1) , 3= 1(1)q, .Ij -1
- . =0 ™i

3 = 0(1)q=1, 1 = O(1)m-1

[-39% .1
. 18 ¢
€

z for some positive constants c¢;7 and cyg. Then the solution 2, of
o -
(6.31) Dz - sh(t:hzh + th) =0, LILPPNT WS €8 satisfies

(6.32) “h'h < c‘gt(IBI + czo)

for some positive c.q independent of ¢
6.36) Lemma: Let L be defined as in (3.3). Let the cosfficient matrices A} :
satisfy (3.5). Assume that the operator associated with the reduced problem (3.7) has a
uniformly bounded inverse, i.e. that there exists a constant Cyg SO that
R R
(6.37) ”’h'_‘h”h < °22“"h"h"h"h + B (yh,xh)l)
holds for all grids Ty+ Then there exists a solution (’h"h’ of the problem
R L . - * - + R
& " o {6.38) L‘h(yh,zh) ‘hl Yoo ’0' ,'0 - l'o B (’hl'h) - ‘2
¢ for all (nm)-deminsional vectors B = (8 ,61.82)' and all grid functions %. (¥ y)

b
{ ? satisfies
{
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(6.39) I(yh,zh)l < czs(lﬂl * "hlh)
for a positive constant ¢, independent of .
Proof: Let the n x n wmatrices T, be defined by
o 1) - s {0+ T a0, @) =0
h''h h h h h 00

(6.40) .
11,+ 12+ )#

+ + +
coh(rh) - sh((Ah ) ('rh) + (Ah Yy } =0, (Tyo o .

- - 12 - 1.+ h .+
(Here Th((A;‘) oA, ) ) and T;((A; ) s (Ag3) ) denote the first n_ and last n, rows

h _h 11, -1 ~12 iy
of Th(Ail'A12))' Because of Lemma (6.19) T, satisfies T = -(A ') ‘(A7) + 7T + 0(e)
and
- i xh_ -1 “ N-1 h_ -1
1T, 0 < I +=5) , 3= g, I 1< 1+ —5) s
(6.41) =0 =i

3= 0(Nig=1, 1 = 0(1IN~1

We define Uy = Y~ Th2y and obtain

¢ 3 £ 1 ¢4 t 11.¢ ¢ 12.¢ : 4
euuuh su(l«h uh) + ’13 + hisijfunh ) T, * (A )h)ohzh) aljnljzh
0. 21 22 21, 11 =112 0, 21" 0
(6.42) Dh'h = shmh w, + {Ah - Ah (A )h Ah )zh)l + sh(nh 'rhzh) + %

- + R 1 .-112 R

Uy * 60, Yo 81. B (~(A )h Ay :h,zh) 32 B (Th,uh,zh) .
S0 for € and H sufficiently small (6.42) can be solved by using contraction and (6.39)
holds.

With the aid of Lemma (6.36) we now construct the general solution of
Lch(yh,zh) - .h i.e. a solution which depends on (n+m) free parametears. We start with
the homogenous problem:
(6.43) Lemma: Let the assumptions of Lemma (6.36) hold. Then there exist solutions
| 2 2 r . r
(¥,r2,)s (yp.%, ) of the problems
L2 I L.+ L

Lch(yh"h) =0, (yoo) n, (Yno’ =0, oo " 0

(6.44)

r r r .- r .+ + r
Len¥pe®y) = 00 (vgp) = 0r (yyg) = ne 2y =0

- 4
for any n dimensional parameter vector n = (n ,n )T. For any constant «x < €23

=24~
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(wvhere cy4 1is defined as in Lemma (6.36) there exists a K(x) so that

l(y:j)-l < K(r) INIR(0,1,6), § = 1(1)q
(6.45)
u(y:j)",zzjn < K(x) In imin{e,P(0,1-1,x}, 3 = O(1)q~1

|(y’;j)*| < K(x) In IR(L,8-1,K), § = 0, 1, g9
(6.46)
TR RIS () in imin{e,P(1+1,8-1,0}, § = V(1)q

L -1
P(k,2,) = I (14 ~=)
=k

holds independent of €.

- L - -1 ) -1
Proof: We define “13 - (y“) P(0,i,x) , vij = zuP(O.L,) v 3= 1(V)q,

L .+ + -1
(uu) - (ytj) P(9,4-1,k) , j = 0(1)q-1, 4 = O(1)N~-1. Then u, and v, satisfy
(6.47) o, =8, (A s v+ o]
. 13% T Syl )y, h ' Vn 10
(6.48) o, . =8t ")’*+('2)"v)+<(1¢ﬁ)"’
. 13% T Sy Y ot ) 4, c ! Yiq
0, 21 222
€0.4Vh = Vip * S5yy(Ay Dpuy * Ay qvy)
(6.49)
" an + =0 =0
Ugo = M v Uyp = 9 Yyo
1 " 1 2
d‘j = {1 *T) e 3= t()qy, d1° =1, dlj =1, j=1(1)q
(6.50)
@ =1+38 5 - atagral dveenial ™!, @070
10 €’ 13 ag 13 100, 13 N 13 seey 19 .

+ - - - + +
(To derive (6.48) the equations w,k = & - w and w, = o ™)
™ 3 = “qqx * “g-3,qx s ~ “qax T ‘g-3.qx

have to be used.) 8ince we can look at (6.49) as a perturbation of the explicit Ruler-

scheme the terminal value problem for (6.49) is stadble. Thus we obtain (using a

perturbation argument for (6.47) and (6.48)) that I(uh,vh)l & constinl holds it «x is

less c;; (vhere c,; is defned as in Lemma (6.36)). Because of Lemma (6.28)
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Is:lh = 0(c) holds and therefore l(y;')*lh is also of order 0(€). Therefore (6.45)

holds. (6.46) is proved analogously.

Proof of Theorem (3.10):s To complete the construction of the general solution of

L th(yh"h) = .h we first define a solution (;h':h) of the inhomogeneous problem which
depends on the m-dimensional free parameter vector E:
~ o~ -~ - ~ + R~ ~ ~
(6.52) I‘th(yh"h) .h' (yoo) =0, (y‘w) =0, 8 (’h"h) n .
Let (yh,z*), (y5.25), 0", n' be defined as in Lesma (5.45). Then (3. +yt +y5. 5 +xtea’)
h'=n’e Wpepde Moo -43). 190 X0 Y N i
is the general solution of t‘ch(yh':h, = .h' To prove the existence of a solution of (3.6)

and the stability of the associated operator we show that the equation, which arises when

we 1 t the g al solution in the boundary conditions (3.4) is soluble. We obtain

n. -~ ~ ~ ~
’11(n+) * B12Y00¥n0 00" 2N0) + 0(eln ,n 1) = B,
(6.53)
"+ otern,nyn = 8, -

This system is invertible and the norm of the inverse is bounded uniformly in € So there
exists a constant c,, such that l(n-,n*.‘v.l')l < U

const (180 + lohlh) holds independent of ¢ and the grid Tye

(6.54) Proof of Theorem (4.15): We start with constructing an 0(¢) approximation of the

-~ ~ - o o
solution of (3.1): Let (yh,zh), Tye and (yh,:h) be defined by

181 holds. Therefore l(yh.:h)ls

-

R~ ~ R~ ~ - = - ~ e
(6.55) iy, %) =0, by ,5) =0, @y =8 (£t ,2)y)

+ 4+, _+ ~ s
wh Y, " sh(f‘(th.:h)yh)
e ~
o IR IR T RN S A 790y 4 b ¢ 0,0,0))
5 00’ *w0’ M1 %00/ %n0 (P12 %00 2no - 22007 %4000
'NO N0

yo - ~ . ; [} - -~ .
T R
Here V and W are defined as in (2.7). Because of (2.4) there exists a solution of

0 0
(5.55). Let 4, and v, be defined by L e A L Then u, and v,

-26=

R
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satisfy
wh“h =g (3y (%)\lh + --— (%)v ) +H (uh.v ) + O(ﬂyhlh)

+ gt ag_
wh“h h %y (%)\Ih + (%)v )+H (nh.v ) + O(ﬂyhl )

0 .
0, v, = su(%(%)uh + 3ig v ¢ By ¢ otety, 0
-‘—L (uh)(u") + Bylw v )+ 0Celtu, v, )0 ) =0 .

Rere .h denotes (th.yh,: +€)e lt“‘h"h) satisfies M (u:..vi) -u‘(u:.v:)l

<c »ax l(uh,v e l(uh-uh,v v )., u (0,0) = 0, i = 1(1)4, for some constant Cyg
25 3=1,2
independent of €. Because of Theorem (3.10) we can now use nonlinear Picard-iteration

starting with (uh.vh) = (0,0) to show the existence of a solution of (3.1)., We obtain
l(yh-y:.xh-s:)l = 0(c) since the first step of the iteration is of order 0(¢). Keller
(1975) shows, that if a nonlinear operator has a Lipschitx continuous linsarization within

a sphere K then the operator is stable in a sphere K 0 ( (y:,::n and ) and
)]

0 o
Do((yhllh))
the stability constant depend only on the Lipschitz constant and the nora of the inverse of

the linearization of the operator at (y:,l:).
-t

{6:57) Proof of Theorem (4.18); et yglt), zo(t), uy (), v (1=H) be defined as tn (2.1),

(2.2) and let (;h';h)' ;h be defined as above. Since (5.55) is the discrete counterpart
of the reduced problem and we use a method of order (q+!) we obtain
~ o~ - ~ ~ q}‘
(6.58) l(yh,:h) (yo(th). lo(th))l = 0" )
by using (2.7) and standard arguments. Because of Lesma (5.19) we obtain for H

sufficiently small

a i O'h -1 N=1 dlr
(6.59) lyul & const ® (1 ¢+ -) e 3= 1)q, lyu const ¥ (9 0—?). 3=0,q-1.
=0 =i

Estimating l(y:’.s:’) - (rgle  demg Lt N By MF,E =Ty, ) e,)) ¢ ofuu .

"'0“13" + lvo(t“)l gives the result.




. {1 ty '
|

(6.60) Proof of Lemma (3.22): Let (y(th,c),:(th,c)) denote the solution of (1.1)

restricted on the grid ‘l’H. Then we have .

u
- (3
(6.61) en“y(ch,c) fo ey’ (t, *h s, €)ds .

’ If we interpolate y'(tmi-hls. ) at LITRRA M by a polynomial of degree q-1 (which is

integrated exactly by si j) and use the formula for the remainder term of polynomial

interpolation we get

Y - q , (g+1)
(6,62) 1(27,) | € const ¢h; 1y ] .
1) i (ti'tiﬂ)
Yy ,* q, {(q+1) z .. q+1  (q+2)
Similarly we get '“i.j) I = O(Chi.y '(‘1"'131))' uul t)(h1 Iz '(tt'txn)). It

follows from the asymptotic expansion (2.1), (2.2) that y(qﬂ), z(q+2) satisfy

it -1
‘ exp( ) + exp(A —)
{ (6.63) |(y(q”)(t,¢), z(q*n(t,e))l S const(l + £ prY) .
€
(6.64) Proof of Theorem (4.25): Let y(t,c) be defined by
- (6.65) ey’ = Alt,z (e, )y, y (0,€) = ui(0), y (1, = v(0)
where Zgs Wge vo are defined as in (2.1). As it is easy to show ;, u and VvV satisfy
- 4 +
iy -"0'(0,1) = 0(¢€), ty -~ vol(o'” = 0(e). Let now Y, and gz, Dbe defined as in the

proof of Theoream (4.15). Since Izh-zo(th,e)lh - o(ﬂqﬂ) holds and the initial and

terminal value problems in (5.55) for ¥, Aare stable we obtain

~

lyh-y (f.h,t:)lh < con-t(l:h-:o(th. l:)lh +

(6.66) .
+ ux(mzly(qﬂ)l(t e )t 1= 0CUN=1) = 08
177401

if we choose the mesh according to (3.24). Summarizing (6.65) and (6.66) we obtain that

! l(y:,z:) - (yo(th.t), zoh:h,lz))lh = 0(c+8) holds, where (yg:2g) is defined as in Theorem

(3.18). Therefore I(yh,zh) - (y(th,e). z(th.c))l = 0(et8) holds. So for ¢ and §
sufficiently small (y(th,e):(th,t)) 1ies within the ball xp(yh,:h). 80 we can apply
Theorem (3.15) and obtain that l(yh.:h) - (y(th). :(th))l S const 8§ nolds independent of

! ' -28-

i3
.
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Proof of Theorem (4,27): We choose h, = ¢&? -xp(;;*) as long as b, < & nolds i.e. as
eq. 1 - h:‘_ - tlx
long as ti < x ln(;) holds. Ry setting h1 - -&2—, "1 = :!T Step ' in (4.25) becomes

1
T el T 1 Y
Choose h1 = ag as long as tl < ln(;) holds. (Wwith a= P .} Given € and a
assume that we would need N points, i.e. t“ > fn L holds. If we add 1 point !:“ >
to +1
ﬂ.n('-:— oxp(:—))- Therefore N+1 is the number of points we would need to solve the same
° -2
t!) a
problem with € = €40 . Computing the sequcnce t:"" - cn exp(~- :—) shows that for
n
a> 10 3 it decreases from ¢ = 10 2 to €= 10-18 in 3 steps.
To obtain estimate (4.29) we state
1
h, T expl(ia)
1 i=-1 1 oi%
t, > et § explia) = e8? .
=0 e -1
Therefore
a
1 1, & =}
N < aln(ln(t) . + 1)
holda.
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